
Clustering 

It is basically a type of unsupervised learning method. An unsupervised 
learning method is a method in which we draw references from datasets 
consisting of input data without labeled responses. Generally, it is used 
as a process to find meaningful structure, explanatory underlying 
processes, generative features, and groupings inherent in a set of 
examples. It is a main task of exploratory data analysis, and a common 
technique for statistical data analysis, used in many fields, including pattern 
recognition, image, analysis, information retrieval, bioinformatics, data 
compression, computer graphics and machine learning. 

 

The result of a cluster analysis shown as the coloring of the squares into 

three clusters. 

Clustering is similar to classification, but the basis is different. In Clustering 
you don’t know what you are looking for, and you are trying to identify some 
segments or clusters in your data. When you use clustering algorithms on 
your dataset, unexpected things can suddenly pop up like structures, 
clusters and groupings you would have never thought of otherwise. 

In this part, you will understand and learn how to implement the following 
Machine Learning Clustering models: 

1. K-Means Clustering 
2. Hierarchical Clustering 

https://www.geeksforgeeks.org/supervised-unsupervised-learning/
https://en.wikipedia.org/wiki/Exploratory_data_analysis
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Data_analysis
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Image_analysis
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/Computer_graphics
https://en.wikipedia.org/wiki/Machine_learning


 

 

Supervised Learning (Regression, Classification): Already have training 

data and answer. Answer of the training data supply to the model. Above 

example already have supplied to the Model as input data of Apple and 

annotation, these are apples. Now supply new image and ask for is this? 

Model provide answer as it’s an apple. 

Un-supervised model is different, here don’t have answer and model has to 

think for itself. Here input data send as different types of fruits images and 

ask to model group these fruits in different categories even we don’t supply 

the categories. Machine has to know or understand apples, bananas and 

oranges. It can make conclusion and create own group. machine can 

understand what is banana, apple and orange. So, supervised learning you 

give the model and opportunity to train where has the answer and  

unsupervised you don’t supply the answer. 

Clustering Methods:  
 Density-Based Methods: These methods consider the clusters as the 

dense region having some similarities and differences from the lower 
dense region of the space. These methods have good accuracy and 

the ability to merge two clusters. Example DBSCAN (Density-Based 



Spatial Clustering of Applications with Noise), OPTICS (Ordering 
Points to Identify Clustering Structure), etc. 

 Hierarchical Based Methods: The clusters formed in this method 

form a tree-type structure based on the hierarchy. New clusters are 
formed using the previously formed one. It is divided into two 
category  
 

 Agglomerative (bottom-up approach) 
 Divisive (top-down approach) 

 Partitioning Methods: These methods partition the objects into k 
clusters and each partition forms one cluster. This method is used 
to optimize an objective criterion similarity function such as when 
the distance is a major parameter example K-means, CLARANS 
(Clustering Large Applications based upon Randomized Search), 
etc. 

 Grid-based Methods: In this method, the data space is formulated 
into a finite number of cells that form a grid-like structure. All the 
clustering operations done on these grids are fast and independent 
of the number of data objects example STING (Statistical 
Information Grid), wave cluster, CLIQUE (CLustering In Quest), etc. 

 
 
Clustering Algorithms: K-means clustering algorithm – It is the simplest 

unsupervised learning algorithm that solves clustering problem. K-means 

algorithm partitions n observations into k clusters where each observation 

belongs to the cluster with the nearest mean serving as a prototype of the 

cluster.  

 

K MEANS CLUSTERING 

k-means clustering is a method of vector quantization, originally from signal processing, that 

aims to partition n observations into k clusters in which each observation belongs to the 

cluster with the nearest mean, serving as a prototype of the cluster.  This results in a 

partitioning of the data space into Voronoi cells. k-means clustering minimizes within-cluster 

variances (squared Euclidean distances), but not regular Euclidean distances, which would 

be the more difficult Weber problem: the mean optimizes squared errors, whereas only 

the geometric median minimizes Euclidean distances. For instance, better Euclidean 

solutions can be found using k-medians and k-medoids. 

https://www.geeksforgeeks.org/k-means-clustering-introduction/
https://www.google.com/search?sca_esv=6a9cfcd5d693b1e0&rlz=1C1VDKB_enIN1019IN1019&sxsrf=ACQVn0-N0s4gMxQ5XIbPi5X2pxgVkMC3rQ:1708498887441&q=K+MEANS+CLUSTERING&spell=1&sa=X&ved=2ahUKEwjgvaOq7ruEAxWn1DgGHcmwDN8QBSgAegQICRAC
https://en.wikipedia.org/wiki/Voronoi_cell
https://en.wikipedia.org/wiki/Squared_Euclidean_distance
https://en.wikipedia.org/wiki/Weber_problem
https://en.wikipedia.org/wiki/Geometric_median
https://en.wikipedia.org/wiki/K-medians_clustering
https://en.wikipedia.org/wiki/K-medoids


  

 

  

 

Algorithms: Standard algorithm (naive k-means) 

 

 

  



WCSS (Within-Cluster Sum of Squares) is a crucial concept in K-Means Clustering, 
an unsupervised learning algorithm used for grouping unlabeled datasets into different 
clusters. Let’s dive into how it works: 

1. K-Means Clustering Overview: 
o K-Means aims to divide an unlabeled dataset into K predefined clusters. 

Each data point belongs to only one cluster based on its similarity to other 
data points. 

o The algorithm iteratively refines the clusters by minimizing the sum of 
distances between data points and their corresponding centroids. 

2. Working of K-Means Algorithm: 
o Step 1: Choose K: 

 Decide the number of clusters (K). This value determines how 

many centroids the algorithm will create. 
o Step 2: Initialize Centroids: 

 Randomly select K points as initial centroids (they can be from the 
dataset or other points). 

o Step 3: Assign Data Points: 
 Assign each data point to the closest centroid. This forms the 

predefined K clusters. 
o Step 4: Update Centroids: 

 Calculate the variance within each cluster (WCSS) and place a new 
centroid at the center of each cluster. 

o Step 5: Repeat Iterations: 
 Reassign each data point to the closest new centroid. 
 If any reassignment occurs, go back to Step 4; otherwise, proceed 

to the next step. 
o Step 6: Model Ready: 

 The algorithm converges when no further reassignments occur. 
 The final centroids represent the clusters. 

3. Visual Explanation: 

o Imagine a scatter plot with two variables (let’s call them M1 and M2). 
o Suppose we want to create 2 clusters (K=2). 

o Randomly choose initial centroids. 
o Assign data points to the nearest centroid. 
o Recalculate centroids. 
o Repeat until convergence. 

!K-Means Clustering 
4. Elbow Method: 

o To determine the optimal K, we use the elbow method. 
o It plots the WCSS against different values of K. 
o The “elbow” point (where WCSS starts to level off) indicates the best K. 

K-Means Clustering iteratively refines clusters by minimizing distances, and WCSS 
plays a crucial role in this process. 

 

https://www.javatpoint.com/k-means-clustering-algorithm-in-machine-learning
https://www.javatpoint.com/k-means-clustering-algorithm-in-machine-learning


Elbow Method 

the elbow method involves finding the optimal k via a graphical representation. It works 

by finding the within-cluster sum of square (WCSS), i.e. the sum of the square distance 

between points in a cluster and the cluster centroid. 

The elbow graph shows WCSS values on the y-axis corresponding to the different 

values of K on the x-axis. When we see an elbow shape in the graph, we pick the K-

value where the elbow gets created. We can call this the elbow point. Beyond the elbow 

point, increasing the value of ‘K’ does not lead to a significant reduction in WCSS. 

 

 

  



 

How to Use the Elbow Method in Python 

#install yellowbrick to vizualize the Elbow curve 
!pip install yellowbrick   
 
from sklearn import datasets 
from sklearn.cluster import KMeans 
from yellowbrick.cluster import KElbowVisualizer 
 
# Load the IRIS dataset 
iris = datasets.load_iris() 
X = iris.data 
y = iris.target 
 
# Instantiate the clustering model and visualizer 
km = KMeans(random_state=42) 
visualizer = KElbowVisualizer(km, k=(2,10)) 
  
visualizer.fit(X)        # Fit the data to the visualizer 
visualizer.show()        # Finalize and render the figure 

 



 

Actual elbow curve with no clear elbow. 

So, in the majority of the real-world data sets, there’s not a clear elbow 

inflection point to identify the right ‘K’ using the elbow method. This makes 

it easier to find the wrong K. 

Silhouette Method Is Better Than the Elbow Method 

The Silhouette score is a very useful method to find the number of K when 

the elbow method doesn’t show the elbow point. 

The value of the Silhouette score ranges from -1 to 1. Following is the 

interpretation of the Silhouette score. 

 1: Points are perfectly assigned in a cluster and clusters are easily 

distinguishable. 



 0: Clusters are overlapping. 

 -1: Points are wrongly assigned in a cluster. 

 

 

Silhouette scores for two clusters. 

Silhouette Score = (b-a)/max(a,b) 

Where:  

 a = average intra-cluster distance, i.e the average distance between each 
point within a cluster. 



 b = average inter-cluster distance i.e the average distance between all 
clusters. 

 

k-means++ 
 

k-means clustering is a method of vector quantization, originally 

from signal processing, that aims to partition n observations into k clusters 

in which each observation belongs to the cluster with the 

nearest mean (cluster centers or cluster centroid), serving as a prototype of 

the cluster. This results in a partitioning of the data space into Voronoi 

cells. k-means clustering minimizes within-cluster variances (squared 

Euclidean distances), but not regular Euclidean distances, which would be 

the more difficult Weber problem: the mean optimizes squared errors, 

whereas only the geometric median minimizes Euclidean distances. For 

instance, better Euclidean solutions can be found using k-medians and k-

medoids. 

 

Drawback of standard K-means algorithm: 

One disadvantage of the K-means algorithm is that it is sensitive to the initialization of 
the centroids or the mean points. So, if a centroid is initialized to be a “far-off” point, it 
might just end up with no points associated with it, and at the same time, more than 
one cluster might end up linked with a single centroid. Similarly, more than one 
centroid might be initialized into the same cluster resulting in poor clustering. For 
example, consider the images shown below.  

A poor initialization of centroids resulted in poor clustering.   

https://en.wikipedia.org/wiki/Vector_quantization
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Partition_of_a_set
https://en.wikipedia.org/wiki/Cluster_(statistics)
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Centroid
https://en.wikipedia.org/wiki/Voronoi_cell
https://en.wikipedia.org/wiki/Voronoi_cell
https://en.wikipedia.org/wiki/Squared_Euclidean_distance
https://en.wikipedia.org/wiki/Squared_Euclidean_distance
https://en.wikipedia.org/wiki/Weber_problem
https://en.wikipedia.org/wiki/Geometric_median
https://en.wikipedia.org/wiki/K-medians_clustering
https://en.wikipedia.org/wiki/K-medoids
https://en.wikipedia.org/wiki/K-medoids


 

To overcome the above-mentioned drawback we use K-means++. This algorithm 

ensures a smarter initialization of the centroids and improves the quality of the 

clustering. Apart from initialization, the rest of the algorithm is the same as the 

standard K-means algorithm. That is K-means++ is the standard K-means algorithm 

coupled with a smarter initialization of the centroids. 

 

K-Means++ Initialization Algorithm:  

Step 1: Choose first centroid at random among data points  



Step 2: For each of the remaining data points compute the distance (D) to the 

nearest out of already selected centroids 

 Step 3: Choose next centroid among remaining data points using weighted 

random selection – weighted by D2  

Step 4: Repeat Steps 2 and 3 until all k centroids have been selected  

Step 5: Proceed with standard k-means clustering 

 

 

 

  



K-Mean Clustering in Python 

Dataset:  

Key point: We will not to predict here because we will have no idea what to 

predict. We want to identify some pattern. We will create dependent 

variable and that will take finite number of variables.   

 

Mall_Customers.csv: 

 

 

  



K-Means Clustering (Python) 

 

Importing the libraries 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

 

Importing the dataset 

dataset = pd.read_csv('Mall_Customers.csv') 

X = dataset.iloc[:, [3, 4]].values 

 

** customer_id no impact on whatever we will create dependent variable in 

future. Process the K-Mean algorithm identify the cluster of data and also 

create dependent variable. customer_id just identification the customer. 

Two features (Annual Income & Spending Score (1-100)) we are using 

here out four matrices of features because visualize the cluster 2D 

features. If we use four features then very hard to visualize the all features. 

Every axis is one feature then may be possible to visualize three 

dimensions but nice graph 2D therefore only going with column and identify 

the cluster. Python starting index is 0 like customer_id. Therefore, Annual 

Income K$ as index 3 & Spending Score (1-100) as index 4.  

 

Using the elbow method to find the optimal number of 
clusters 

 

from sklearn.cluster import KMeans 

wcss = [] 

for i in range(1, 11): 

    kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42) 

    kmeans.fit(X) 

    wcss.append(kmeans.inertia_) 

plt.plot(range(1, 11), wcss) 

plt.title('The Elbow Method') 



plt.xlabel('Number of clusters') 

plt.ylabel('WCSS') 

plt.show() 

 

** The sklearn.cluster module gathers popular unsupervised clustering algorithms. Kmeans is 

class. wcss [ ] list for each number of cluster. range(1, 11)  10 different KMeans clusters. 

n_clusters is number of clusters i=1,2,3,….10. init = 'k-means++' initialization so save from 

random initialization trap. random_state = 42 any number you can take here 42 is the bring luck 

mathematics number. kmeans.fit(X) method trained kmeans algorithm data as feature of Annual 

Income & Spending Score (1-100). It is way identify some clusters. 

wcss.append(kmeans.inertia_)  append new value inside the list. wcss 

computed one cluster. some of the square distances all the observation 

points and centre point. Attribute of the Kmeans class which is called 

inertia and here kmeans is object. 

plt.plot(range(1, 11), wcss)  plot function X Co-ordinate is range(1,11) 

and Y Co-ordinate is wcss.   

 

 

 

O/P:  

 

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster


So, optimal number of clusters is 5. After this point curve started being 

almost flat and decreasing very slowly. Next step train the K-Mean Model 

on the dataset that’s why we want to build it, trained it and run it to 

identify the 5 clusters. 

 

 

Training the K-Means model on the dataset 

kmeans = KMeans(n_clusters = 5, init = 'k-means++', random_state = 42) 

y_kmeans = kmeans.fit_predict(X) 

 

**kmeans.fit_predict(X) fit_predict method not only trained it also 

returned exactly 5 clusters different group of customers. values taken 

from customer make a group of Each group similar information. 

fit_predict(X)creates the dependent variable y_kmeans. 

 

print(y_kmeans) 

 

O/P:  

[2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 

 3 2 3 2 3 2 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 4 1 4 0 4 1 4 1 4 0 4 1 4 1 4 1 4 1 4 0 4 1 4 1 4 

 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 

 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4] 

 

** We can see 1st customer belongs to cluster 3 (Index 2 because cluster 1 

start with index 0) 

 

Visualising the clusters 

plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 100, c = 'red', 

label = 'Cluster 1') 

plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 100, c = 'blue', 

label = 'Cluster 2') 

plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 100, c = 

'green', label = 'Cluster 3') 



plt.scatter(X[y_kmeans == 3, 0], X[y_kmeans == 3, 1], s = 100, c = 'cyan', 

label = 'Cluster 4') 

plt.scatter(X[y_kmeans == 4, 0], X[y_kmeans == 4, 1], s = 100, c = 

'magenta', label = 'Cluster 5') 

plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], 

s = 300, c = 'yellow', label = 'Centroids') 

plt.title('Clusters of customers') 

plt.xlabel('Annual Income (k$)') 

plt.ylabel('Spending Score (1-100)') 

 

plt.show() 

 

 

** details of code: plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], 

s = 100, c = 'red', label = 'Cluster 1')  X contains exactly different 

customers mean matrix of two columns Annual Income(k$) & Spending Score (1-

100); X co-ordinate is Annual Income(k$) and Y co-ordinate is  Spending Score (1-

100); X[y_kmeans == 0, 0]  y_kmeans == 0 is the 1st cluster and 0 refers 

to 1st column mean index 0 related to Annual Income(k$);  

X[y_kmeans == 0, 1]  y_kmeans == 0 is the 1st cluster and 1 refers to 2nd 

column mean index 1 related to Spending Score (1-100); 

Simple stuff size S=100 mean display began of the points, each of the point is 

different customer in 1st cluster.   

 

Same way for second cluster : 
plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 100, c = 'blue', 

label = 'Cluster 2') 

 

upto five cluster. 

 

 

plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], 

s = 300, c = 'yellow', label = 'Centroids')  kmeans.cluster_centers_ 

refer different centre input take different values of the cluster and 0 to 

correspondent to 1st column inside the cluster centre array;  

kmeans.cluster_centers_[:, 1]  Y co-ordinate 1 correspond to second 

column inside the cluster centre array; 

s=300 larger size clearly highlight the centre point among all the 

observation points of the customers in a cluster.   

 

 

 

 



 

O/P : 

 

Green cluster Annual Income low and Spending Score also low. 

Magenta cluster high income and high spending.  

Red cluster medium income and medium spend.  

 


	Algorithms: Standard algorithm (naive k-means)
	Elbow Method
	How to Use the Elbow Method in Python
	Actual elbow curve with no clear elbow.
	Silhouette Method Is Better Than the Elbow Method
	k-means++
	To overcome the above-mentioned drawback we use K-means++. This algorithm ensures a smarter initialization of the centroids and improves the quality of the clustering. Apart from initialization, the rest of the algorithm is the same as the standard K-...
	K-Means++ Initialization Algorithm:
	Step 1: Choose first centroid at random among data points
	Step 2: For each of the remaining data points compute the distance (D) to the nearest out of already selected centroids
	Step 3: Choose next centroid among remaining data points using weighted random selection – weighted by D2
	Step 4: Repeat Steps 2 and 3 until all k centroids have been selected
	Step 5: Proceed with standard k-means clustering

	K-Means Clustering (Python)
	Importing the libraries
	Importing the dataset
	Using the elbow method to find the optimal number of clusters
	Training the K-Means model on the dataset
	Visualising the clusters


